
CS103 Handout 42

Winter 2018 March 3, 2018

Extra Practice Problems 3

Here’s another (giant!) compilation of practice problems you can use to review just about every-
thing from this quarter. Some of these problems are marked with a star and touch on topics we
haven’t covered yet as of the time this set of problems is released (verifers, non-RE languages, P
and NP), so don’t panic if you haven’t seen those concepts yet. We fgured it was better to get this
packet of problems out early so that you could review anything you were shaky on than to hold of
until the very end of the quarter.

Problem One: Cartesian Products and Subsets
Prove or disprove: if A, B, C, and D are sets where A × B ⊆ C × D, then A ⊆ C and B ⊆ D.

Problem Two: Repeated Squaring
In many applications in computer science, especially cryptography, it is important to compute ex-
ponents efciently. For example, the RSA public-key encryption system, widely used in secure
communication, relies on computing huge powers of large numbers. Fortunately, there is a fast al-
gorithm called repeated squaring for computing xy in the special case where y is a natural number.

The repeated squaring algorithm is based on the following function RS:

RS (x , y)={
1 if y=0

RS (x , y /2)
2 if y is even and y>0

x⋅RS (x ,(y−1)/2)
2 if y is odd and y>0

For example, we could compute 210 using RS(2, 10) as follows:

In order to compute RS(2, 10), we need to compute RS(2, 5)2.
In order to compute RS(2, 5), we need to compute 2·RS(2, 2)2.

In order to compute RS(2, 2), we need to compute RS(2, 1)2.
In order to compute RS(2, 1), we need to compute 2·RS(2, 0)2.

By defnition, RS(2, 0) = 1
so RS(2, 1) = 2·RS(2, 0)2 = 2·12 = 2.

so RS(2, 2) = RS(2, 1)2 = 22 = 4.
so RS(2, 5) = 2·RS(2, 2)2 = 2·42 = 32.

so RS(2, 10) = RS(2, 5)2 = 322 = 1024.

The RS function is interesting because it can be computed much faster than simply multiplying x
by itself y times. Since RS is defned recursively in terms of RS with the y term roughly cut in half,
RS can be evaluated using approximately log₂ y multiplications. (You don't need to prove this).

Prove that for any x and any ∈ ℝ y , that ∈ ℕ RS(x, y) = xy. (Hint: use complete induction on y.)

2 / 14

Problem Three: Domatic Partitions
On Practice Second Midterm Exam 4, there’s a question about dominating sets. (If you haven’t yet
done that problem, stop and do that problem frst – it’s a really good one!)

Let's introduce some new terminology. A domatic partition of G is a way of splitting the nodes in
G into disjoint, nonempty sets V₁, V₂, …, Vₙ such that each set Vi is a dominating set. (Two sets S
and T are disjoint if S ∩ T = Ø.) The domatic number of G, denoted d(G), is the maximum number
of sets in any domatic partition of G.

i. Let G be an undirected graph and let δ be the minimum degree of any node in G. Prove that
d(G) ≤ δ + 1.

An isolated node in a graph G is a node that is not adjacent to any other nodes in G.

ii. Let G be an undirected graph with no isolated nodes. Prove that d(G) ≥ 2. (Hint: Use a result
from Practice Second Midterm Exam 4. We normally won’t ask anything directly of of prac-
tice exams, but since you’re doing extra practice problems, we fgured it’s not unreasonable
here.)

iii. Prove that the bounds you came up with in parts (i) and (ii) are “tight” in the sense that, in
general, you cannot improve upon these upper bounds or lower bounds without more knowl-
edge of the structure of the graph. Specifcally, give a graph G where d(G) = δ + 1 and give
a graph G with no isolated nodes where d(G) = 2. Briefy justify your answers.

Problem Four: Diagonalization and Logic ★
Given the predicates

• String(w), which states that w is a string over alphabet Σ;
• TM(M), which states that M is a TM with input alphabet Σ; and
• Accepts(M, w), which states that M accepts w,

along with the function ⟨O⟩, which represents the encoding of some object O, write a statement in
frst-order logic that says “LD ∉ RE.” (We’ll cover LD on Wednesday, May 31. Looking forward: the
language LD is defned as LD = { ⟨M⟩ | ⟨M⟩ ∉ ℒ(M) })

Problem Five: Lifts and Hasse Diagrams
Let A = {1, 2, 3}. Draw the Hasse diagram of the lift of < over A to ℘(A), which is the relation < de-
fned as

X<Y if Y ≠ Ø and for any x ∈ X and y ∈ Y, we have x < y.

Problem Six: Addition, Formally
Let A, B, C, and D be sets where |A| = |C|, |B| = |D|, A ∩ B = Ø, and C ∩ D = Ø. Using the formal
defnition of equal cardinality, prove that |A ∪ B| = |C ∪ D|.

Fun fact: this is how we can defne what it means to add two cardinalities. For example, ℵ₀ + ℵ₀ is
formally defned as “the cardinality of |A ∪ B|, where A and B are any two disjoint sets of cardinal-
ity ℵ₀.”

3 / 14

Problem Seven: Partial Sums
Suppose that you have a set S of n > 0 natural numbers. Prove that there must be a nonempty subset
of S where the sum of the numbers in that subset is a multiple of n. (Hint: Number the elements of S
as x₁, x₂, …, x . Then, look at xₙ ₁, x₁ + x₂, x₁ + x₂ + x₃, etc.)

Problem Eight: Fun with DFAs and NFAs
Here's some true-or-false questions to ponder:

i. True or false: If D is a DFA over alphabet Σ and D has no accepting states, then ℒ(D) = Ø.

ii. True or false: If D is a DFA over alphabet Σ and D has no rejecting states, then ℒ(D) = Σ*.

iii. True or false: If N is an NFA over alphabet Σ and N has no accepting states, then ℒ(N) = Ø.

iv. True or false: If N is an NFA over alphabet Σ and N has no rejecting states, then ℒ(N) = Σ*.

Let Σ = {a, b, c, d, e} and let L be the following language:

L = { w ∈ Σ* | every character from Σ appears at least once in w }

Any DFA for L must have at least 32 states (you don't need to prove this.)

v. Prove that any DFA for L must have at least 32 states.

vi. Design a reasonably-sized NFA for L. This shows that even if you can't fnd a small NFA
for a language, you might be able to fnd a small NFA for its complement.

Problem Nine: Antitautonyms
Let Σ = {a, b} and consider the language L = { wx | w ∈ Σ*, x ∈ Σ*, |w| = |x|, and w ≠ x }. Prove that
L is not a regular language.

Problem Ten: Closure Properties of CFGs
This question explores closure properties of CFLs.

i. Show that the context-free languages are closed under union, concatenation, and Kleene
star.

ii. Although we didn't prove this, the context-free languages are not closed under complemen-
tation. In lecture, you saw a CFG for the language { w ∈ {a, b}* | w is a palindrome }, and
on Problem Set Seven you built a CFG for the complement of this language. Explain how
this is possible even though the context-free languages aren't closed under complementation.

Problem Eleven: Designing Turing Machines
Design a TM over the alphabet Σ = {a, b} whose language is { w ∈ Σ* | w does not contain aa or bb
as substrings }.

4 / 14

Problem Twelve: Approximating LD ★
Prove that there is a language X where X ⊆ LD, where X contains infnitely many strings, and where
X is an RE language.

Problem Thirteen: Narcissistic Turing Machines ★
Let L = { ⟨M⟩ | M is a TM and ℒ(M) = { ⟨M⟩ }}. In other words, L is the set of all TMs that accept
themselves and only themselves. (We can think of them as narcissistic TMs.)

Prove that L ∉ R.

Problem Fourteen: Intersecting Sets
(Midterm Exam, Fall 2015)

We can use set-builder notation to describe a set by giving a rule that describes what elements are in
the set. Specifcally, if P(x) is some predicate, then the set

{ x | P(x) }

is the set containing all objects x where P(x) is true (and no elements besides these).

Let's suppose that we have a set S that is a set of sets (that is, every element of S is itself a set). For-
mally, this means we're talking about a set S where

∀T. (T ∈ S → Set(T)).

If S is a set of sets, then we can take the intersection of all of the sets contained in S. The resulting
set, denoted ∩S, is called the intersection of S. For example, if

S = { {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6} },

then ∩S = {3, 4}.

Intuitively, an object x is an element of ∩S if x belongs to every element of S. We can use this intu-
ition to come up with a formal defnition of ∩S, which is given below:

∩S = { x | ∀T. (T ∈ S → x ∈ T) }

This is the standard defnition of the intersection of ∩S that's used throughout set theory. However,
this defnition of ∩S has a pretty major edge case.

Prove that the set ∩Ø does not exist. (Hint: Think back to Problem Set Four.)

Problem Fifteen: Powers, Multiples, and Induction
Let k ≥ 1 be any natural number. Prove, by induction, that (k+1)n – 1 is a multiple of k for all n ∈ ℕ.

5 / 14

Problem Sixteen: Strongly Connected Graphs
A directed graph is called strongly connected if for any pair of nodes u and v in the graph, there's a
path from u to v and from v to u. In a directed graph, the indegree of a node is the number of edges
entering it, and its outdegree is the number of edges leaving it. Find a strongly-connected graph
with 137 nodes where each node's indegree is equal to its outdegree.

Problem Seventeen: Closure Properties and Logic ★
Given the predicates

• TM(M), which states that M is a TM;
• String(w), which states that w is a string; and
• Accepts(M, w), which states that M accepts w,

Write a statement in frst-order logic that says “the RE languages are closed under union.”

Problem Eighteen: Properties of Functions
This question explores properties of special classes of functions.

i. Prove or disprove: if f : ℝ → ℝ is a bijection, then f(r) ≥ r for all r ∈ ℝ.

ii. Prove or disprove: if f : ℕ → ℕ is a bijection, then f(n) = n for all n ∈ ℕ.

iii. Prove or disprove: if f : ℝ → ℝ and g : ℝ → ℝ are bijections, then the function h : ℝ → ℝ
defned as h(x) = f(x) + g(x) is also a bijection.

Problem Nineteen: The Indistinguishability Relation
Let L be an arbitrary language over an alphabet Σ. We'll say that two strings x, y ∈ Σ* are indistin-
guishable relative to L, denoted x ≡L y, if the following is true:

∀w ∈ Σ*. (xw ∈ L ↔ yw ∈ L).

i. Prove that if L is any language over Σ, then ≡L is an equivalence relation over Σ*.

ii. Prove that if x ≡L y and x ∈ L, then y ∈ L.

iii. Let L = { w ∈ {a, b}* | |w| ≡₃ 2}. What are all the equivalence classes of ≡L?

Problem Twenty: Spin Me An Entree
Suppose that n people are seated at a round table at a restaurant. Each of the n people orders a dif-
ferent entrée for dinner. The waiter brings all of the entrées out and places one dish in front of each
person. Oddly enough, the waiter doesn't put anyone's dish in front of them.

Prove that there is some way to rotate the table so that at least two people have their entree in front
of them.

6 / 14

Problem Twenty One: Regular Languages and Parity
Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or
 w has odd length and has the form On }

For example, EE ∈ PARITY, OOOOO ∈ PARITY, EEEE ∈ PARITY, and ε ∈ PARITY, but
EEE ∉ PARITY, EO ∉ PARITY, and OOOO ∉ PARITY.

i. Write a regular expression for PARITY.

ii. Design a DFA that accepts PARITY.

Problem Twenty Two: Giant Balanced Strings
Let Σ = {a, b} and let L = { w ∈ Σ* | w has the same number of a's and b's and |w| ≥ 10100 }.

i. Prove or disprove: L is not a regular language.

ii. Prove or disprove: there is at least one infnite subset of L that is regular.

Problem Twenty Three: CFGs and Swedish Pop Music
Let Σ = {a, b} and let L = { w ∈ Σ* | w is a palindrome and w contains abba as a substring }. Write
a context-free grammar for L.

Problem Twenty Four: Checking for Equality
Let Σ = {a, b, =}. Draw the state-transition diagram of a TM for the {w=w | w ∈ {a, b}* }.

7 / 14

Problem Twenty Five: Closure Properties of RE ★
Earlier in this packet of problems you translated the statement “the RE languages are closed under
union” into frst-order logic. It turns out that this statement is true, but a bit trickier to prove that
you might expect.

If we take a language L ∈ RE, we know that we can get a recognizer M for it. A recognizer for L, in
software, would be a function

bool inL(string w)

that takes as input a string w. If w ∈ L, then inL(w) returns true. If w ∉ L, then inL(w) may return
false, or it may loop infnitely.

Let L₁ and L₂ be RE languages. Below is an incorrect construction that purportedly is a recognizer
for L₁ ∪ L₂:

bool inL1uL2(string w) {
return inL1(w) || inL2(w);

}

Here, inL1 and inL2 are recognizers for L₁ and L₂, respectively.

i. Give concrete examples of languages L₁ and L₂ and implementations of methods inL1 and
inL2 such that the above piece of code is not a recognizer for L₁ ∪ L₂. Justify your answer.

To show that the RE languages are closed under union, it's easiest to think about combining to-
gether two verifers for the input languages to produce a verifer for their union.

ii. Using the verifer defnition of RE, prove that the RE languages are closed under union.

Problem Twenty Six: Output Restrictions ★
Let Σ = {a, b} and let L = { ⟨M⟩ | M is a TM and ℒ(M) ⊆ a* }. Prove that L ∉ R.

Problem Twenty Seven: Power Sets and Cartesian Products
Prove or disprove: there are sets A and B where ℘(A × B) = ℘(A) × ℘(B).

Problem Twenty Eight: The Well-Ordering Principle
The well-ordering principle states that if S ⊆ ℕ and S ≠ Ø, then S contains an element n₀ that is less
than all other elements of S. There is a close connection between the well-ordering principle and the
principle of mathematical induction.

Suppose that P is some property such that

• P(0)

• ∀k ∈ ℕ. (P(k) → P(k+1))

Using the well-ordering principle, but without using induction, prove that P(n) holds for all n ∈ ℕ.
This shows that if you believe the well-ordering principle is true, then you must also believe the
principle of mathematical induction.

8 / 14

Problem Twenty Nine: Tensor Products and Graph Coloring
Let G = (V₁, E₁) and H = (V₂, E₂) be undirected graphs. The tensor product of G and H, denoted
G × H, is an undirected graph. G × H has as its set of nodes the set V₁ × V₂. The edges of G × H are
defned as follows: the edge {(u₁, v₁), (u₂, v₂)} is in G × H if {u₁, u₂} ∈ E₁ and {v₁, v₂} ∈ E₂.

Prove that χ(G × H) ≤ min{χ(G), χ(H)}.

Interestingly, the following question is an open problem: are there any undirected graphs G and H
for which χ(G × H) ≠ min{χ(G), χ(H)}? A conjecture called Hedetniemi's conjecture claims that the
answer is no, but no one knows for sure!

Problem Thirty: Restricting and Manipulating Logic
Consider the following formula in frst-order logic:

∀x ∈ ℝ. ∀y ∈ ℝ. (x < y → ∃p ∈ ℤ. ∃q ∈ ℤ. (q ≠ 0 ∧ x < p/q ∧ p/q < y))

This question explores this formula.

i. Translate this formula into plain English. As a hint, there's a very simple way of expressing
the concept described above.

ii. Rewrite this formula so that it doesn't use any universal quantifers.

iii. Rewrite this formula so that it doesn't use any existential quantifers.

iv. Rewrite this formula so that it doesn't use any implications.

v. Negate this formula and push the negations as deep as possible.

Problem Thirty One: Restrictions of Relations
Let R be a binary relation over a set A. For any set B ⊆ A, we can defne the restriction of R to B,
denoted R|B , to be a binary relation over the set B defned as follows:

x R|B y if xRy.

In other words, the relation R|B behaves the same as R, but only on the elements of B.

i. Prove or disprove: if R is an equivalence relation over a set A and B is an arbitrary subset of
A, then R|B is an equivalence relation over B.

ii. Prove or disprove: if R is a strict order over a set A and B is an arbitrary subset of A, then
R|B is a strict order over B.

iii. Prove or disprove: there is a strict order R over a set A and a set B ⊆ A such that R|B is an
equivalence relation.

iv. Prove or disprove: there is an equivalence relation R over a set A and a set B ⊆ A such that
R|B is a strict order.

9 / 14

Problem Thirty Two: Functions and Relations, Together!
(Midterm Exam, Spring 2015)

In this question, let A = {1, 2, 3, 4, 5}. Let f : A → A be an arbitrary function from A to A that we
know is not a surjection. We can then defne a new binary relation ~f as follows: for any a, b ∈ A,
we say a ~f b if f(a) = b. Notice that this relation depends on the particular non-surjective function
f that we pick; if we choose f diferently, we'll get back diferent relations. This question explores
what we can say with certainty about ~f knowing only that its domain and codomain are A and that
it is not a surjection.

Below are the six types of relations we explored over the course of this quarter. For each of the
types, determine which of the following is true:

• The relation ~f is always a relation of the given type, regardless of which non-surjective
function f : A → A we pick.

• The relation ~f is never a relation of the given type, regardless of which non-surjective func-
tion f : A → A we pick.

• The relation ~f is sometimes, but not always a relation of the given type, depending on
which particular non- surjective function f : A → A we pick.

Since these options are mutually exclusive, check only one box per row. (Hint: Draw a lot of pic-
tures.)

~f is refexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is irrefexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is symmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is asymmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is transitive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is an equivalence
relation

☐ Always ☐ Sometimes, but not always ☐ Never

~f is a strict order ☐ Always ☐ Sometimes, but not always ☐ Never

10 / 14

Problem Thirty Three: Permutation Parity*

Let n be an odd natural number and consider the set S = {1, 2, 3, …, n}. A permutation of S is a bi-
jection σ : S → S. In other words, σ maps each element of S to some unique element of S and does
so in a way such that no two elements of S map to the same element.

Let σ be an arbitrary permutation of S. Prove that there is some r ∈ S such that r – σ(r) is even.

Problem Thirty Four: Reversing Regular Languages
If w is a string, then wR represents the reversal of that string. For example, the reversal of “table” is
“elbat.” If L is a language, then LR is the language { wR | w ∈ L } consisting of all the reversals of the
strings in L.

It turns out that the regular languages are closed under reversal.

i. Give a construction that turns an NFA for a language L into an NFA for the language LR. No
proof is necessary.

ii. Give a construction that turns a regular expression for a language L into a regular expression
for the language LR. No proof is necessary.

Problem Thirty Five: Centrist Languages
Prove that the language { w ∈ {a, b}* | |w| ≡₃ 0 and the middle third of the characters in w con-
tains at least one a } is not regular.

Problem Thirty Six: Parenthesis Parity
Let Σ = {(,)} and let L = { w ∈ Σ* | w is a string of balanced parentheses and w has an even num-
ber of open parentheses }. Write a CFG for L.

Problem Thirty Seven: A Better Sorting Algorithm
In lecture, we designed a Turing machine that, given a string of 0s and 1s, puts them into ascending
order and then halts. The sorting algorithm we used worked by fnding a copy of the substring 10,
reversing it, and repeating until no more copies of this substring exists. While this algorithm works,
it's not very efcient.

Design a TM that sorts a string of 0s and 1s and does so more efciently than the machine from
class. By “more efciently,” we mean that the TM you design should, on average, take many fewer
steps to complete than our TM.

* Adapted from http://www.cut-the-knot.org/do_you_know/pigeon.shtml.

http://www.cut-the-knot.org/do_you_know/pigeon.shtml

11 / 14

Problem Thirty Eight: Computable Functions ★
A function f : Σ* → Σ* is called a computable function if it is possible to write a function com-
pute_f that takes in a string w and outputs f(w).

Given any computable function f and language L, let's defne f[L] = { w ∈ Σ* | ∃x ∈ L. f(x) = w }.
In other words, f[L] is the set of strings formed by applying f to each string in L.

Prove that if L ∈ RE and f is a computable function, then f[L] ∈ RE.

Problem Thirty Nine: Complementary TMs ★
Prove that L = { ⟨M, N⟩ | M is a TM, N is a TM, and ℒ(M) = ℒ(N) } is not in R.

Problem Forty: Nonregular Languages via a Diferent Path
The Myhill-Nerode theorem is a powerful tool for proving that languages aren’t regular, but it might
not be the easiest way to prove that a given language isn’t regular. This problem explores a diferent
route you can take to prove that various languages aren’t regular.

i. Prove that if L₁ is a language, L₂ is a regular language, and L₁ ∩ L₂ is not regular, then L₁ is
not regular.

ii. Using your result from part (i), but without using the Myhill-Nerode theorem, prove that the
language L = { w ∈ {a, b}* | w has the same number of a’s as b’s } is not regular.

Problem Forty One: Just a Few More Grammars
Below is a list of alphabets and languages over those alphabets. Design a CFG for each language.

i. Let Σ = {1, ≥} and let L = { 1m≥1n | m, n ∈ ℕ and m ≥ n }. Write a CFG for L.

ii. On Problem Set 8, you explored the language L₁ = { 1m+1n=1m+n | m, n ∈ ℕ } over the alpha-
bet {1, +, =} Consider the following generalization of this language, which we will call L₂,
which consists of all strings describing unary encodings of two sums that equal one another.
For example:

1 + 3 = 4 would be encoded as 1+111=1111

4 = 1 + 3 would be encoded as 1111=1+111

2 + 2 = 1 + 3 would be encoded as 11+11=1+111

2+0+2+0=0+4+0 would be encoded as 11++11+=+1111+

0=0 would be encoded as =

Notice that there can be any number of summands on each side of the =, but there should be
exactly one = in the string; thus 1=1=1 ∉ L₂. Write a CFG for L₂.

iii. Let Σ = {(,), [,]} and let L = {w ∈ Σ* | w is a string of balanced parentheses and brack-
ets}. This means that all parentheses and brackets must match one another, and collectively
they must obey the appropriate nesting rules. For example, ([])[] ∈ L, but ([)] ∉ L. Write
a CFG for L.

12 / 14

Problem Forty Two: Formalizing the Lava Diagram ★
In the Guide to the Lava Diagram, we explored these two languages:

L₁ = { ⟨M⟩ | M is a TM and |ℒ(M)| ≥ 2 }

L₂ = { ⟨M⟩ | M is a TM and |ℒ(M)| = 2 }

The Guide makes many claims about these languages, but never actually proves them.

i. Prove that L₁ is undecidable.

ii. Prove that L₂ is undecidable.

iii. Show that L₁ is recognizable by designing a verifer for it. Your verifer should be repre-
sented in pseudocode via a method with a signature like this one:

bool imConvincedIsInL1(TM M, Arg₁Type arg₁, Arg₂Type arg₂, …, Arg Type argₙ ₙ)

where the arguments beyond the frst represent the certifcate and can be of any type you’d
like.

Problem Forty Three: Self-Reference and RE ★
Since ATM is an RE language, there’s a recognizer for ATM, which we can represent in software as a
method willAccept. Consider the following program P:

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

Prove that this program loops on all inputs.

13 / 14

Problem Forty Four: Threat Detection ★
There have been a ton of news articles about computer systems being attacked by independent ac-
tors and nation-states. You might wonder why our computers are so vulnerable – couldn't someone
just write a program that analyzes a program's source code and determine whether it has any secu-
rity problems?

Let's consider a simplifed scenario. Imagine that there's a special method

void sendSecretDataTo(String emailAddress)

that, if called, sends an email containing a bunch of secret information to the specifed email ad-
dress. For example, you might call sendSecretDataTo("john.roberts@supremecourt.gov") to
send all the secret data to Chief Justice John Roberts, or call sendSecretDataTo("bad.ac-
tor@hackers.com") to send all the secret data to evil hackers.

You are interested in whether it's possible to write a method

bool canLeakDataTo(String program, String emailAddress)

that takes as input the source code of a program and an email address, then returns true if there is
some execution of program that causes the secret data to the specifed email address and returns
false otherwise. This program would let you check whether a particular program might ever leak
data to a specifed email address, which would make it easier to check whether the program is se-
cure.

Is it possible to implement this method? If so, write code for the method, then prove that your code
works as intended. If not, prove that it's not possible to implement this method.

(As a note, if you try implementing this method, you should do so in a way that doesn’t call sendSe-
cretDataTo, and if you try proving this method can’t be written, you can assume that no correct im-
plementation will ever call sendSecretDataTo.)

Problem Forty Five: Translating Out Of Logic
For each frst-order statement below, write a short English sentence that describes what that sen-
tence says. While you technically can literally translate these statements back into English, you'll
probably have better luck translating them if you try to think about what they really mean. Then,
determine whether the statement is true or false based on what you know about sets and set theory.

• ∃S. (Set(S) ∧ ∀x. x ∉ S)

• ∀x. ∃S. (Set(S) ∧ x ∉ S)

• ∀S. (Set(S) → ∃x. x ∉ S)

• ∀S. (Set(S) ∧ ∃x. x ∉ S)

• ∃S. (Set(S) ∧ ∃x. x ∉ S)

• ∃S. (Set(S) → ∀x. x ∈ S)

• ∃S. (Set(S) ∧ ∀x. x ∉ S ∧ ∀T. (Set(T) ∧ S ≠ T → ∃x. x ∈ T))

• ∃S. (Set(S) ∧ ∀x. x ∉ S ∧ ∃T. (Set(T) ∧ ∀x. x ∉ T ∧ S ≠ T))

• ∃S. (Set(S) ∧ ∀x. x ∉ S) ∧ ∃T. (Set(T) ∧ ∀x. x ∉ T))

14 / 14

Problem Forty Six: Rock, Paper, Scissors
(Final Exam, Winter 2012)

The number of characters in a regular expression is defned to be the total number of symbols used
to write out the regular expression. For example, (a b)*∪ is a six-character regular expression,
and ab is a two-character regular expression.

Let Σ = {a, b}. Find examples of all of the following:

• A regular language over Σ with a one-state NFA but no one-state DFA.

• A regular language over Σ with a one-state DFA but no one-character regular expression.

• A regular language over Σ with a one-character regular expression but no one-state NFA.

Prove that all of your examples have the required properties.

